
The Special Issues of Microcomputers in Civil Engineering on Evolutionary Systems in Design, 1996

Modelling Design Exploration as Co-Evolution

Mary Lou Maher and Josiah Poon

Key Centre of Design Computing
University of Sydney

Australia
(mary, josiah)@archsci.arch.su.edu.au

Abstract

Most computer-based design tools assume designers work with a well defined problem.
However, this assumption has been challenged by current research. The explorative
aspect of design, especially during conceptual design, is not fully addressed. This paper
introduces a model for problem-design exploration, and how this model can be
implemented using the genetic algorithm (GA) paradigm. The basic GA, which does not
support our exploration model, evaluates individuals from a population of design
solutions with an unchanged fitness function. This approach to evaluation implements
search with a prefixed goal. Modifications to the basic GA are required to support
exploration. Two approaches to implement a co-evolving GA are presented and
discussed in this paper: one in which the fitness function is represented within the
genotype, and a second in which the fitness function is modelled as a separately
evolving population of genotypes.

Keywords: exploration, genetic algorithm, co-evolution, conceptual design

1. Introduction

Most computer-based design tools (like CAD and CASE) assume designers work with a
well-defined problem. However, this assumption of a well-defined problem has been
challenged by current research2,3,10. Recent work has demonstrated that the explorative
aspect of design, especially during conceptual design, is not fully addressed. The
assumption that designers have a clear picture of the problem and solution is not valid.
Designers do not usually have a complete problem description before commencing a
design synthesis. During conceptual design, designers play around with ideas to get
more understanding about the problem rather than focus on just finding a solution.
Design is therefore an iterative process of searching the design problem space as well as
the solution space. This kind of phenomenon is called exploration in design. Since the
phenomenon of exploration is not well understood, this is rarely supported by current
design tools. A computational model of exploration is required in order to provide better
assistance to designers. If we view the change in problem definition as a response to the
search for alternative solutions, we can model exploration as a change in goals.
Evolutionary systems provide a mechanism for modelling change, however, they
assume the goal is fixed. Allowing the goals to change over time, as well as the solution
space, can be modelled as a co-evolutionary system.

Genetic Algorithms9 (GAs) provide an alternative to traditional search techniques by
adapting mechanisms found in genetics. Three notions are borrowed from biological
systems:

• the phenotype, which can be a living organism for biological systems or a
design solution for design systems;

2

• the genotype, which is a way of representing or encoding the information
which is used to produce the phenotype; and

• the survival of the fittest, which determines whether a genotype survives to
reproduce.

In GA systems the genotype is usually represented as a binary string whose length
varies with each application. For example, a genotype may look like: 001001101. GAs
introduce a representation (genotype) that differs from its expression (phenotype) in
order to perform changes that couldn't be possible at the phenotype level. The genotype
representation allows combination or mutation to occur in order to construct better
strings. Some measure of fitness is applied to each string after combination and
mutation to determine which strings participate in generating the next generation of the
population.

A simple genetic algorithm considers a population of n strings and applies the operators:
reproduction (or selection), crossover, and mutation in order to create the next
generation. Reproduction is a process in which strings are copied according to their
fitness function. Crossover is a process in which the newly reproduced strings are mated
at random and each pair of strings partially exchanges information. Mutation is the
occasional random alteration of the value of one of the bits in a string. Algorithms used
to implement these processes are described in detail Goldberg’s book6.

In this paper a design process based on a genetic algorithm is presented which can
model characteristics of explorative design: the search for problem definition as well as
the search for solution. The use of an evolutionary system in which the genotypes
represent alternative problem definitions and alternative solutions provides the basis for
the co-evolution of problem space and solution space.

1.1 Exploration in Design

Since design has been categorised as a problem solving activity 20 , design is treated as a
search of the solution space for a result. This idea has dominated the direction of
artificial intelligence in design for some time. However, the validity of this hypothesis
has been queried by recent work. For example, Corne and his colleagues2 from
Edinburgh University suggest that it is inappropriate to consider design as a search
problem because a search problem requires a well defined problem space whereas a
design problem is usually ill-structured. They propose design as “exploration” as
follows:

“.. involves the construction and incremental extension of problem statements
and associated solutions ..”

Logan and Smithers12 further elaborate this definition that

“.. the formulation of the problem at any stage is not final ... As the design
progresses, the designer learns more about possible problem and solution
structures as new aspects of the situation become apparent and the
inconsistencies inherent in the formulation of the problem are revealed. As a
result, .. the problem and the solution are redefined...”

This proposal on design has stressed the importance of incremental and interactive
aspects of problem with solution.

3

Navinchandra18 defined exploration in the program CYCLOPS as

“.. Exploration is the process of generating and evaluating design alternatives
that normally would not be considered..”

He focuses on alternatives and this is achieved through criteria relaxation and criteria
emergence. The relaxation is not constraints relaxation but a relaxation of the threshold
value. This changing of threshold values causes a part of the solution space which is
originally inside bound of the pareto curve to be explored. Solutions in this inside bound
solution space can be examined as alternatives. Emergence described in CYCLOPS is a
recognition activity. Criteria from precedent cases may be recognised to be relevant and
interesting enough to apply to current situation. The introduction of new criteria adds a
new dimension for the designer to consider. The new criteria will be included to be part
of the evaluation of design solution.

Another definition of “exploration” is offered by Gero3 that:

“.. Exploration in design can be characterised as a process which creates new
design state spaces or modifies existing design state spaces...”

This definition extends the “state space” concept of search20, so that the state space is
changed during exploration. This definition implies that the solutions in the given or
predefined state space are insufficient for exploration. Gero continues to suggest that

“.. exploration precedes search and it, effectively, converts one formulation of
the design problem into another .. Part of designing involves determining what
to design for (function or teleology), determining how to measure satisfaction
(behaviour), and determining what can be used in the final artefact (structure)..”

The definition relates exploration to search, indicating that exploration precedes search,
and at the same time differentiates exploration from search.

Maher14 provides a definition which also relates search and exploration:

“.. search becomes exploration where the focus of the search changes as the
process continues ..”

This definition identifies search as a part of exploration, but not the same as exploration
and also characterises the two as distinct, i.e. search has a definite goal while
exploration doesn’t. Search as part of exploration cannot guarantee convergence
because the design requirements change with the design solutions at the same time.
However, convergence criteria could be externally defined and separate to the design
requirements, recognising the fact that design usually completes when time has run out
or factors external to the concerned problem.

For the remainder of this paper, we present a formal model of exploration.The model is
illustrated in Fig.1 as the interaction of problem space and solution space. The problem
space (or the functional requirements) is represented by P, and the solution space is
represented by S. Exploration is defined as a phenomenon in design where P interacts
and evolves with S over time. This is to emphasised here that the exploration addressed
in this paper is the phenomenon of a (design) process. This is in contrast with
exploration in search algorithms.13

4

P(t) P(t+1)

S(t) S(t+1)

Evolution

Evolution

Focus,
 Fitness

Focus,
 Fitness

Focus,
 Fitness

TIME

PROBLEM
SPACE
DIMENSION

DESIGN /
SOLUTION
SPACE
DIMENSION

Fig.1 Problem-Design Exploration Model

The phenomenon of exploration as illustrated in Fig.1 has the following characteristics:

1. There are two distinct search spaces: Problem Space and Design Space.
2. These state spaces interact over a time spectrum.
3. Horizontal movement is an evolutionary process such that

a. Problem space P(t) evolves to P(t+1), P(t+2), and so on;
b. Solution space S(t) evolves to S(t+1), S(t+2), and so on.

4. Diagonal movement is a search process where goals lead to solution. This can be
“Problem leads to Solution” (downward arrow) or “Solution refocusses the
Problem” (upward arrow).

The problem space P(t) is the design goal at time t and S(t) is the solution space which
defines the current search space for design solutions. The solution space S(t) provides
not only a state space where a design solution can be found, but it also prompts new
requirements for P(t+1) which were not in the original problem space, P(t). This is
represented by the dashed upward arrow from design space S(t) to problem space
P(t+1). The upward arrow is an inverse operation where S(t) becomes the goal and a
“search” is carried out in the problem space, P(t+1), for a “solution”. This iterative
relationship between problem space and design space evolves over time.

This model of exploration depicts an evolutionary system, or in fact, two evolutionary
systems. The evolutionary systems are the problem space and the solution space. The
evolution of each space is guided by the most recent population in the other space. This
model is called co-evolution and provides the basis for a computational model of design
exploration. The basis for co-evolution is the simple genetic algorithm where special
consideration is given to the representation and application of the fitness function so
that the problem definition can change in response to the current solution space.

1.2 Related Research In Genetic Algorithms

Genetic algorithms provide the basis for modelling evolutionary systems. The
application of GAs to design include the solution to the truss design problem. The ten-
member truss problem7 aims to find the optimal weight of each member for a given pre-
determined configuration, such that the whole structure is stable and has a minimum

5

weight. The configuration and the fitness function remains unchanged throughout the
GA process. This represents a basic application of genetic algorithms to a design
optimisation problem.

Watabe and Okino21 further study this problem by searching for structural shape as part
of the problem. This is achieved by the introduction of new genetic operator called T-
mutation. There are two types of T-mutation. The first one, T1-mutation, adds one new
node to a randomly selected bar. The second one, T2-mutation, changes the topological
structure without changing the number of nodes. The effect after the application of the
T-mutation results in a new species which consists of individuals with different
structural configurations. The changed configuration opens up a further new solution
space to search. This application of a genetic algorithm shows how the representation of
the genotype determines the level at which the search occurs, in this case the search
included a search for a configuration. However, the goal as defined by the fitness
function remains to be the minimum weight configuration.

SAGA8, Species Adaptation Genetic Algorithms, allows the genotype to change in
length as well as content so that species can emerge. He suggests that the notion of a
search space is a metaphor when the question of “Where in this whole search space is
the optimum?” is asked. However, this metaphor implies a space of pre-defined extent
with a predefined goal. If a structure is to be evolved with potentially unrestricted
capabilities, the simple GA, which has fixed length genotypes, is not an appropriate
tool. The capability to represent a variable-length genotype is important to evolution. As
the length increases, the population evolves as a species rather than global search.
However, his model does not show how individuals from the solution space can affect
the problem space.

Koza11 recognises the importance of co-evolution and suggests the term in biology is
sometimes used to reflect the fact that all species are simultaneously co-evolving in a
given physical environment. He uses Game Playing Strategy to elaborate on co-
evolution, where two players in a game are represented as two populations of
individuals. The fitness of a strategy of a player is measured by its performance against
all strategies deployed by the other player. The fitness is, thus, a relative score. The
performance of the two players continue to evolve with respect to the strategies by the
opposing player. The mutual interactions and implicit relationships between players in a
game is extended to a general conclusion as follows:

“In co-evolution, there are two (or more) populations of individuals. The
environment for the first population consists of the second population. And
conversely, the environment for the second population consists of the first
population ... Co-evolution is a self-organizing, mutually bootstrapping process
that is driven only by relative fitness.”

This provides a model for co-evolution where two solution spaces evolve in competition
to each other, yet the goal remains the same. Co-evolution is affected by each search
space defining the threshold for survival in the other search space. We present a co-
evolutionary system in which the two spaces are not in competition with each other, yet
they evolve in response to each other. Three differences between the co-evolution of
Game Playing Strategy and the co-evolution of Problem-Design Space are:

1. the two populations in a game are opponents with the aim to beat each other,
whereas in our co-evolution model, the aim is to explore the Problem Space and
Design Space and to help each other to acquire better fitness values;

6

2. the purpose of co-evolution in the Game Playing Strategy is to measure how
good an individual strategy can stand when played against various strategies by
the opponent, while our co-evolution model aims to measure how good an
individual from a population can satisfy (adapt) the expectations of individuals
from another population; and

3. the same fitness function is used for both spaces in the Game Playing Strategy,
only the threshold for reproduction is changed in co-evolution, while our co-
evolution model applies a potentially different fitness function to each space.

2. A Co-Evolutionary Process for Explorative Design

Artificial evolutionary systems have been developed by John Holland9 whose goals
have been twofold :

1. to abstract and explain the adaptive processes of natural systems and
2. to design artificial software systems that retain the important mechanisms of

natural systems.
The efficiency and flexibility of biological systems is due to rules of self-repair, self-
guidance and reproduction that hardly exist in most artificial systems. We use these
ideas as a basis for defining a computational model of exploration. We build on the
simple GA and extend these ideas to allow for the co-evolution of search spaces.

A simple GA, as shown below, is the basis for developing an evolutionary process
model for explorative design.

t = 0;
initialize genotypes in Population(t);
evaluate phenotypes in Population(t) for fitness;
while termination condition not satisfied do

t = t + 1;
select Population(t) from Population(t-1);
crossover genotypes in Population(t);
mutation of genotypes in Population(t);
evaluate phenotypes in Population(t);

We apply the simple GA to the design process, where we assume the process begins
with an initial population of design concepts or styles encoded as genotypes. The
evaluation determines which genotypes survive. The evaluation is performed by
evaluating a fitness function and operates on the phenotype, which in the design process
is the instantiation of the design rather than the design concept. The genotypes and
phenotypes are the representation paradigms for design concepts and realised design
solutions. The processes of selection, crossover, mutation, and evaluation are the basis
of the search for a design solution.

Selection is a process in which individuals are copied according to their fitness function.
This means that an individual with a higher value has a higher probability of
contributing one or more offspring in the next generation. This operator is an artificial
version of natural selection, a Darwinian survival of the fittest among individuals. In a
natural population, fitness is determined by an individual's ability to survive. In the
context of design, a fitness function representing the design requirements determines
whether a design is suitable or not. Once an individual has been selected for
reproduction, an exact replica of the individual is made. This individual is then entered
into a mating place for further genetic operator action.

7

Crossover is a process in which the newly reproduced individuals are mated at random
and each pair of individuals partially exchange information using a cross site chosen at
random. For example if we consider the individuals A1 = 0110 | 1 and A2 = 1100 | 0
(where the separator symbol is indicated by |), the resulting crossover yields the
following two news individuals A1' = 01100 and A2' = 11001. Crossover in a design
process occurs when two design concepts are partially combined to form a new design
concept.

Mutation is the occasional random alteration of the value of one of the bits in an
individual. When used sparingly with reproduction and crossover, mutation is an
insurance policy against loss of notions. In fact mutation plays a secondary role in the
operation of GAs because the frequency of mutation to obtain good results in empirical
GAs studies is on the order of one mutation per thousand bit transfers6. Mutation has the
potential to make small changes to a design concept, rather than a crossover process that
makes large changes. We do not employ mutation in our co-evolutionary model of
design.

Evaluation is a process of determining if a genotype continues in the next round of
crossover. The termination condition is usually related to the evaluation, that is, when
the evaluation of the population yields a suitable design, the process is terminated.
Evaluation in the design process occurs by testing the performance of the design against
relevant criteria. In the GA model of design, the fitness function is the basis for
evaluation. The fitness function as a representation of design requirements can be
predefined for the entire search process or it can be allowed to change as the genotype
population changes. By changing the fitness function in response to the current
population, the process models the ability of designers to change their focus when an
interesting solution is found. This can be modelled as co-evolution of the design space
and the performance space, where each space then becomes the population of genotypes
for its own evolution and the fitness function for the other space.

In order to model exploration using a GA, the fitness function, Fitness(t), becomes
variable and evolves over time. This deviates from the traditional view of the fitness
function which remains the same for the evaluation of the population of genotypes from
different cycles. The population(t) goes through the normal reproduction, crossover and
mutation step to create the next generation. The fitness of each genotype is measured
using the function, Fitness(t), which differs from Fitness(t-1).

The co-evolution of the design genes (solution space) and the fitness function (problem
space) provides a model for design as exploration. Two approaches to representing
coevolution are:

• CoGA1: A single composite genotype is formed by the combination of a problem
requirements and a design solution. The fitness function is defined locally for
each design solution.

• CoGA2: The two spaces are modelled as two sets of genotypes and phenotypes:
one for modelling problem requirements and one for modelling design solutions.
The current population of each space provides the fitness measurements for the
other.

8

2.1 CoGA1: Fitness Functions and Design Solution in the Same Chromosome

This first co-evolving algorithm has two modifications to the basic GA:
1. the fitness function (problem part, P) and design solution (solution part, S) are

put into one genotype,
2. there are two phases of crossover-evaluation operations in each generation

instead of the convention of one phase.
The algorithm, CoGA1, is shown below.

CoGA1
t = 0;
initialize genotypes in Population(t);
evaluate phenotypes in Population(t) for fitness;
while termination condition not satisfied do
t = t + 1;
select Population(t) from Population(t-1);
/* Phase 1: from S to P */

crossover genotypes in Population(t) at Performance_space;
evaluate phenotypes in Population(t);

/* Phase 2: from P to S */
crossover genotypes in Population(t) at Design_space;
evaluate phenotypes in Population(t);

Inside the repeating loop, there are two phases of GA operations for each generation. If
no satisfactory solution is found in previous operations with the stated problem, the
problem is revised to give new dimensions for the solution space. Hence, the first phase
corresponds to the shift of attention of fitness function when a solution space is given,
i.e. the upward arrow from S to P in our model of problem-design exploration. In phase
1, crossover occurs in the problem part of the genotype, as illustrated in Fig.2(a). For
example, the crossover point to the parent genotypes cut the problem part to P11 and
P12, and P21 and P22. For the same solution carried forward from the previous phase,
the fitness is evaluated using a different fitness function, i.e. the same S1, which is
evaluated by P21 and P12 in parent genotype, is evaluated by P11 and P22 in the new
recombined child genotype. The fitness value for each design solution represents a local
fitness.

After the problem is revised, the second phase relates to the search for a solution with
the reformulated fitness function from Phase 1. This corresponds to the downward
arrow from P to S in the model, as shown in Fig.2. Crossover occurs on the design
solution part of genotypes: the S11, S12, S21 and S22 in Fig.2(b). The fitness of a
design solution is not evaluated by a common global fitness function, but by the fitness
function defined as the problem part in the same genotype. In other words, the fitness
score of each genotype is again a local fitness value. In our example, the offspring
which has solution part composed of S11 and S22 is evaluated by P1; while the other
offspring, which has S21 and S12 in its solution part, is evaluated by P2.

After phase 2 the solutions are used to check the termination condition to determine
whether another generation is necessary. Currently, the termination condition is defined
as a fixed number of generations, meaning that the exploration stops when a
predetermined amount of time has passed. However, the termination condition can be
any globally defined condition that does not evolve in response to the alternatives found
in the solution space.

9

Parents

Offsprings

P S SP

P11 P12 S1 P21 P22 S2

P11 P12 S1P21P22 S2

Phase 1: Crossover Point

P S SP

P1 P2S11 S12 S21 S22

P1 S11 S12P2 S21S22

Phase 2: Crossover Point

(b)Crossover at Design Solution Space(a)Crossover at Problem Space
Fig.2 Crossover Operation for CoGA1

2.2 CoGA2: Problem Requirements and Design Solution as Two Interacting
Populations

A second approach to co-evolution is to maintain separate spaces of genotypes for
problem requirements and design solutions. As illustrated in Fig.3, the CoGA2 uses the
current selection from each population to be the fitness function for evaluating the
individuals in the other population. The problem requirements is modelled as a
collection of criterion, where each criterion is represented as a genotype in the Problem
Space. Every problem criterion genotype has a label and a weighting (i.e. the genotype
has a length of 2). A problem is, thus, a combination of individual genotypes with their
current weights. If we allow the crossover operator to cut and paste a different weight to
a criterion, followed by selecting a random number of genotypes. These problem
criteria will collectively define a problem which has a different perspective and
emphasis to be solved. The fitness of a solution is defined by the current collection of
criterion. In the other direction, the fitness of a criterion is defined by the number of
times that criterion is satisfied in the current collection of individuals in the Solution
Space.

S1

S2

S3

S4

S5

P1

P2

P3

P4

P5

Problem Space Solution Space

Current Best Solutions

S1

S2

S3

S4

S5

P1

P2

P3

P4

P5

Problem Space

Current Best Requirement

Solution Space

(a) Fitness Evaluation of Problem Space (b)Fitness Evaluation of Solution Space

Fig.3 Fitness Evaluations in CoGA2

10

The CoGA2 starts with initialising the two populations which represent problem and
solution. An initial evaluation of individuals from the Solution Space is performed using
the initial design requirements as defined by the user. The initial evaluation of the
Problem Space is performed based on the selected individuals from the Solution Space.
The termination condition is checked and the pattern of “phases” appear in CoGA2 as
well. Each phase in CoGA2 corresponds to a different evaluation function, rather than
to a different crossover operation as in CoGA1. The CoGA2 algorithm is shown below.

CoGA2:
t = 0;
initialize genotypes in Problem_space(t);
initialize genotypes in Solution_space(t);
initial-evaluate phenotypes in Solution_space(t) for fitness according

to user’s initial requirements;
initial-evaluate phenotypes in Problem_space(t) for fitness according

to user’s initial requirements;
prepare sample of individuals in Problem_space(t) for measuring

fitness of phenotypes in Solution_space(t+1);
prepare sample of individuals in Solution_space(t) for measuring

fitness of phenotypes in Problem_space(t+1);
while termination condition not satisfied do

t = t + 1;
/* Phase 1: from S to P */

select Problem_space(t) from Problem_space(t-1);
crossover genotypes in Problem_space(t);
evaluate phenotypes in Problem_space(t) for fitness

according to selected individuals from
Solution_space(t-1);

prepare sample of individuals in Problem_space(t) for
measuring fitness of phenotypes in Solution_space(t+1);

/* Phase 2: from P to S */
select Solution_space(t) from Solution_space(t-1);
crossover genotypes in Solution_space(t);
evaluate phenotypes in Solution_space(t) for fitness

according to selected sample of individuals from
Problem_space(t-1);

prepare sample of individuals in Solution_space(t) for
measuring fitness of phenotypes in Problem_space(t+1);

The algorithm of CoGA2 is, in fact, an interaction of two GA processes: a GA process
on the Problem_space and another on the Solution_space, as illustrated in Fig.4. Each
space evolves as in a simple GA, where the fitness function of one space is based on the
current population of the other space.

11

t = 0;
initialize genotypes in Problem_space(t);
initialize genotypes in Solution_space(t);

evaluate phenotypes in Problem_space(t) for fitness
 to selected sample of individuals in Solution_space(t);
while termination condition not satisfied do
 t = t + 1;
 select Problem_space(t) from Problem_space(t-1);
 crossover genotypes in Problem_space(t);
 evaluate phenotypes in Problem_space(t) for fitness according
 to selected sample of individuals from Solution_space(t);

evaluate phenotypes in Solution_space(t) for fitness to selected
 sample of individuals in Problem_space(t);
while termination condition not satisfied do
 t = t + 1;
 select Design_space(t) from Solution_space(t-1);
 crossover genotypes in Solution_space(t);
 evaluate phenotypes in Solution_space(t) for fitness according to
 selected sample of individuals from Problem_space(t);

Problem Space Solution Space

Fig.4 Interactions of Two Genetic Populations in CoGA2

3. Examples of Co-evolutionary Design

Examples are presented in this section to illustrate how various algorithms, introduced
in previous sections, can be applied to the design of floor plans. The design problem is
kept simple to illustrate the difference between the co-evolutionary approach and the
simple GA approach to design. The sample problem is based on the use of GA's by
Maher and Kundu15 to model adaptive design where a floor plan for a building is
developed, based on a population of existing floor plans. The purpose of the Maher and
Kundu application was to demonstrate the role of crossover in combining design
concepts to form new concepts. Here we use the same problem of floor plan design to
illustrate both adaptation through crossover of concepts and co-evolutionary exploration
through the representation and modification of the fitness function.

In their paper, the topology of the floor plan is represented as a set of vertices, where
each vertex is a room in the floor plan, and the edges represent the adjacencies of the
rooms. Since the adjacency matrix for a graph-based representation of floor plan
topology is a sparse matrix, a list-based representation is used to store only the non-zero
elements of the adjaceny matrix. The general form of representing a floor plan is as
follows:

graph(graph_label, building_label, [vertex_list], [edge_list])

The design process is initiated with the definition of a set of rooms to be included in a
new building, and the final solution is a topology of a floor plan that has the highest
percentage match to the required rooms. In the Maher and Kundu application, the initial
population of floor plans was the basis for finding new floor plan topologies. In our
example, we will also allow the predefined required list of rooms to change as different
floor plan topologies are generated.

3.1 Example of CoGA1

In CoGA1 each genotype has two parts: the Problem and the Solution. The problem part
is a representation of the set of rooms that comprise the required list of rooms for the

12

new building. The solution part is a representation of the set of rooms that the new
building will have. In this example we will only include the rooms that are part of the
floor plan and do not include the adjacencies that represent the topology of the floor
plan.

The problem part and the solution part representation is illustrated in Fig.5, where the
problem part is represented by shaded boxes and solution part by white boxes. The
original implementation of this example, as illustrated in Fig 5(a), is to evaluate new
designs by an external performance function, ie. {entry, lobby, ... , single_beds,
sb_toilets}. In the implementation of CoGA1 the required list of rooms is attached to the
list of rooms in the solution part, forming a composite genotype, as illustrated in
Fig.5(b).

Parent1

Parent2

Child1

Child2

Crossover
 Point

entry lobby single
 beds

sb_toilets cafe

lobby storelibrary

admin
single
 beds

fire
exit

lobby
single
 beds cafe lobby store

library admin
single
 beds

fire
exit

entry lobby single
 beds

sb_toilets

entry lobby single
 beds

sb_toilets

entry sb_toilets

Crossover
 Point

cafe

lobby storelibrary

admin
single
 beds

fire
exit

cafe lobby store

library admin
single
 beds

fire
exit

entry lobby single
 beds

sb_toilets

(a) Representation of Solutions with Fixed Fitness Function

(b) Representation of Solutions with Variable Fitness Function

Parent1

Parent2

Child1

Child2

Fig.5 Floor plan design with fixed and variable fitness

The initialisation of the genotypes for CoGA1 requires the representation of previous
floor plan designs in which the required set of rooms and the complete list of rooms is
represented within a single genetic code. The initial evaluation of the genotypes is based
on a comparison of the population with the user's new design requirements. A
subpopulation is selected, where each member has at least one room in the solution part
in common with the user's list of rooms.

In the first phase of CoGA1 (“a change of focus”), the genetic operations are performed
in the Problem part. If the crossover operator cuts between locus 1 and 2 of the Problem
part in Fig.6, these partial problems from parent genotypes (Parent1 and Parent2)

13

recombine to form new offspring (Child1 and Child2). As a result, a different problem
is generated to test the fitness of solutions carried forward from their parents, i.e. the
solution list {cafe, admin, ..., single_beds} of Parent1 is evaluated by a different criteria
list {library, lobby, ..., single_beds, gym} of Child1. The performance is measured by
the number of matching rooms in the solution with the local requirements. Every
matched room will have the fitness score increased by 1. Hence, for Child1, it has a
fitness measure of 1 because there is only one room in the solution list matching the
requirements (i.e. the single_beds). Child2 also has a score of 1 when its store meets
one of the criteria. The local fitness score will be compared with fitness scores from
other genotypes so that better performing genotypes can get into the next phase.

Parent1

Parent2

Child1

Child2

Crossover
 Point

library admin store

cafe lobby single
 beds gym

cafe

lobby storelibrary

admin
single
 beds

fire
exit

library

admin storecafe

lobby single
 beds gym cafe

lobby storelibrary

admin
single
 beds

fire
exit

Fig.6 Phase 1 of CoGA1: A Change of Focus

Assume both Child 1 and Child2 are selected to the second phase. In Phase 2, they
become Parent1 and Parent2, as illustrated in Fig.7. Genetic operators are applied to the
Solution_part of the genotype in Phase 2 to indicate an attempt to find a solution under
the revised problem. Assume the crossover point is between locus 1 and 2 in the
Solution_part. Part of the solution is moved to another genotype while the problem
remains intact in this phase. The same requirement {library, lobby, ..., single_beds,
gym} retained from Parent1 to Child1 is used to evaluate a different solution. The
evaluation to Child1 is 1 (the matching of lobby) and so is Child2 (the matching of
admin). The GA cycles continue until termination conditions are met .

Parent1

Parent2

Child1

Child2

Crossover
 Point

library

admin storecafe

lobby single
 beds

gym cafe

lobby storelibrary

admin
single
 beds

fire
exit

library

admin storecafe

lobby single
 beds gym cafe lobby store

library admin
single
 beds

fire
exit

Fig.7 Phase 2 of CoGA1: From Problem to Solution

3.2 Example of CoGA2

14

This section continues with the same problem from Section 3.1 to illustrate how CoGA2
works. The set of required rooms now forms a separate space of genotypes, in which
each genotype represents a room and the importance of having that room in the final
design. The solution space is comprised of genotypes that each represent a list of rooms
that were used in previous floor plan designs. Each space is initialised, so that the
Problem space includes all possible rooms and their relative importances and the
Solution space includes a set of floor plans used in previous designs.

The initial evaluation of the phenotypes in the solution space is based on the user's
required set of rooms for the new design problem. Each solution is given a fitness value
equal to the weighted sum of the rooms in the solution that match the user's required
room list.

The initial evaluation of the phenotypes in the problem space is also based on the user's
required set of rooms for the new design problem. The fitness value of each problem
criterion is incremented by 1 if it matches the user's initial required room list.

In Phase 1 of CoGA2, the problem requirements are revised. Based on the value
determined in the previous evaluation, a selection of solutions forms the set of Current
Best Solutions (CBS) and a selection of requirements forms the set of Current Best
Requirements (CBR). During crossover, the genotypes in the CBR are mated, resulting
in a modification of the weights associated with each requirement, or in this example,
with each required room. The evaluation in Phase 1 is illustrated in Fig.8. During
evaluation, the value of each requirement is determined by the number of solutions in
the CBS that satisfy the requirement. For example, since the problem feature lobby can
be found in both S2 and S3, the fitness of the lobby is 2; whereas the problem feature
library can only be found in S2, its fitness score is 1 in this generation. The result of
evaluation is used in the next phase as the basis for the next CBR. The CBR represents a
collection of requirements and their importance in the evaluation of genotypes in the
solution space.

Problem Space

entry

lobby

single_beds

library

store

5

6

8

4

1

cafe

lobby storelibrary

admin
single
 beds

fire
exit

cafe lobby store

library admin
single
 beds

fire
exit

Design Space

S1

S2

S3

S4

Current Best Solutions (CBS)

Fig.8 Evaluation of Problem Criteria by Selected Design Solutions

In Phase 2 the genotypes in the solution space are mated. The CBS provides the
subpopulation for the crossover operation. The result of crossover is a new set of
solutions to be evaluated by the CBR. As illustrated in Fig.9, the CBR is composed of
four atomic problem features: entry, lobby, single_beds and library. Assume that S1 is a

15

floor plan resulting from the crossover operation in Phase 2, and it comprises cafe,
admin, single_beds . This design solution only satisfies one feature from the CBR, i.e.
single_beds. Since the feature single_beds has a weight of 8, the fitness score of S1 is 8.
The fitness of S2, S3 and S4 are measured in the same way and they are given a value
of 10, 6 and 12 respectively. The fitness value provides the basis for the selection of the
next CBS in the next generation.

Problem Space

entry

lobby

single_beds

library

store

5

6

8

4

1

cafe

lobby storelibrary

admin
single
 beds

fire
exit

cafe lobby store

library admin single
 beds

fire
exit

Design Space

S1

S2

S3

S4

Current Best Requirements

A1

A2

A3

A4

Fig.9 Evaluation of Solutions by Selected Criteria

4. Comparison of Co-GA1 With Other Examples of Exploration

This section illustrates how the representation and process of CoGA1 compares to other
implementations of design exploration. Specifically, CoGA1 is considered for the
representation of adapting design prototypes1; the representation of the “best optimum”
beam design5; and landscape design in the CYCLOPS program18. Each of the following
subsections begin with description of the problem domain, the representation of the
problem in our co-evolution model, and how the use of CoGA1 can add the exploration
dimension to the implementation.

4.1 Co-evolution of Design Requirements and Prototypes

In the work of Alem and Maher1, the design prototype is used as the basis for creative
design using a GA to adapt and combine design prototypes for new design
requirements. A design prototype is a generalization of groupings of elements in a
design domain which provides the basis for the commencement and continuation of a
design4. A prototype represents a class of elements from which instances of elements
can be derived. It comprises the knowledge needed for reasoning about the prototype's
use as well as about how to produce instances in a given design context. Applying the
concept of prototypes to CoGA1 in our model of co-evolution, a design prototype is a
representation of the solution part of a genotype. For example, the representation of a
beam design prototype may be:

BEAM PROTOTYPE
Functions:

span-distance
support-gravity-load

Behaviours:

16

bending-stress
shear-stress
deflection

Structure:
length
cross-section-area
section-modulus
material

The problem part of the genotype comprises the features of the beam that form the
requirements of a particular design problem. Each individual in the population,
therefore, comprises a set of design requirements and a set of solution features. The
prototype formalism adds the extra dimension of categorising the features according to
their role in the design process, ie. function, behaviour, or structure.

Design requirements can be requirements on function, requirements on behavior,
requirements on the structure, or any combination of the three. Because of the
incomplete nature of design requirements, no exact value is required. Each attribute
value can be given in terms of a range of values. For example, a set of design
requirements may be:

DESIGN REQUIREMENTS
Function:

span-distance: 30 ft
gravity-load: 30 kips/ft

Behavior:
bending stress: < 36 k/sq.in.

The genotype in CoGA1 has the following two components:

DESIGN REQUIREMENTS | DESIGN PROTOTYPE

Design selection operator initially uses the design requirements for the new design
problem to evaluate and select an initial population of design prototypes. Selection is
based on a partial match between the set of requirements and the attributes of a design
prototype. An acceptable performance is one in which any subset of the requirements
are matched. Following the initial selection, evaluation and selection is based on the
local requirements in the genotype.

The use of CoGA1 differs from the implementation of Alem and Maher because it
allows the design requirements to be modified as well as the original design prototypes.
It could be argued that creative design can result either from the modification of design
solution spaces (ie. the modification of design prototypes) and/or the modification of the
design requirements.

4.2 “Better Optimum” Beam

In the work carried out by Gero and his students5, a genetic algorithm formalism is
introduced that can learn a new shape grammar to produce better beam section. Their
problem is to generate different beam sections from a set of 4 square building blocks,
called cells, which build up a section to be juxtaposed with one another. There is also a
set of rules that governs this juxtaposition. Each cell has a label that is referred to by the

17

composition rules of the grammar that has a weight associated with it. The aim of the
exercise is to find the optimum performance from a population of different beam
topologies after an application of these grammar rules nine times, and the two properties
chosen to be optimised are:

• The moment of inertia of the beam section, which has to be maximised.
• The perimeter of the beam section, which has to be minimised.

There are two approaches to this problem. The first one is to encode the order of
execution of the rules of the shape grammar at the genotype level. The second one is to
encode the rules themselves. The former one is a search to a fixed state space for a
given set of rules in the grammar. The second one, argued by these authors, is to create
and explore new state spaces through the evolution of new rules. This paper will
concentrate on this latter approach.

To make the grammar implicit, they encode the nine repeating groups (rules) in the
genotype. Each rule is composed of four labels (A, B, C, D) and a direction. The rule is
of the following format:

X Y Z

direction

where X is specified by the last applied rule, then followed by a direction symbol
(which can be up, down, left and right) and new labels Y and Z to represent current
move. Their encoding is as follows:

A

direction

0

B1

C2

D3

0

1

2

3

For example, the string
0,2,3,1,1,2,...

specifies the following moves: For initialisation, the first two numbers are ignored and,
therefore, we start off at the third digit. The digit ‘3’ which specifies the fourth label,
which represents D. The next three numbers after ‘3’ is ‘1,1,2’. The first ‘1’ is a
direction symbol which indicates to move up. And the second ‘1’ is a label which
corresponds to B. The ‘2’ is a label symbol which represents C. The nine moves are
continued in this way. The result of this first move is shown below:

D B

C

18

It is claimed that the feasible solution space for this learned grammar has a marked
improvement in performance over the fixed grammar. The new state space occupies a
larger feasible area and they argue a substitution of new solution space, Sn, to the

original space, So, constitute to this result, where So, ⊄ Sn.

To model their evolutionary learning of shape grammars with CoGA1 is similar to the
graph-based GA with a fixed problem as in Fig.5(a). The problem is represented by the
two properties: moment of inertia (I) and length of perimeter (L). The genotype is a
composite of the problem and the solution (the rules) as follows:

I L 0 2 3 1 1 2

Although the original implementation is an exploration where alternative state spaces
are created; exploration is limited to changes in the solution space. The problem space is
left untouched throughout the genetic operations. In applying CoGA1, we allow
different fitness measurements to be attached to the genotype, such as cost of
production (C), durability of the beam (D) and so on. Thus, typical genotypes that
facilitate exploration are as follows:

I L 0 2 3 1 1 2

I D 2 1 3 0 2 3C

The inclusion of the Problem part in the genotype has extended the original exploration
of solution spaces alone to exploration of both state spaces.

19

4.3 CYCLOPS

CYCLOPS18 is a design problem solver. The problem domain is landscape design. A
hypothetical scenario is used for the design process. The scenario allows new designs to
be explored by relaxing constraints and by making tradeoffs among objectives. New
criteria can sometimes emerge. This leads to the discovery of opportunities or to the
recognition of unexpected problems. Hence, exploration in CYCLOPS is a result of two
issues: criteria relaxation and criteria emergence.

It is suggested that constraint relaxation and objective maximisation/ minimisation are
just two sides of the same coin. Hence, they can be treated in a uniform manner. Initial
objectives and constraints are grouped to become what is called criteria. Instead of
being simply satisfied or not-satisfied, a criterion has several levels of satisfaction. The
relaxation was not performed directly on the constraint, but relaxing the threshold value
so that alternatives can be considered. In its current implementation, the relaxed form of
a criterion is represented as a matrix of ranks. The best value is assigned a rank of 1, the
next best region with a rank of 2, and so on. When the criteria are relaxed (i.e. moving
to higher ranks), solution space which is originally inside the pareto curve can be
explored. Solutions in this inside-bound solution space can be examined as alternatives.

Criteria can emerge during the design process. The emergence of new criteria will
create a new dimension for the designer to consider. New criteria are recognised by
CYCLOPS program from a database of past experiences. In CYCLOPS terminology, a
past experience is called a precedent which is a record of the conditions and the effects
experienced. For example, “good view” emerges as a evaluation criterion because of a
home situates in a higher altitude and has a valley in the front where this valley has
lakes and woods. This criterion emerges with the precedent shown below:

conditions: (home altitude high) AND (home view valley)
AND (valley has lakes) AND (valley has woods)

effect:(favourable: home good-view) AND (good-view rank 1)

Hence, emergence in CYCLOPS is achieved through recognition, which is a
knowledge-intensive activity. If a design has certain conditions that match a precedent,
then the precedent is retrieved and the n effects are applied to current design. The newly
n applied effects serve as criteria for evaluating new designs. In other words, the
problem space is expanded by n -dimensions.

Soil

Slope

Cost

Noise

Near Water

1

1

3

5

4

Problem Part

Solution Part

View NC

Fig.10 Criteria with Ranks in Problem Part of Genotype

20

The ideas in CYCLOPS can be modelled with our CoGA1 algorithm, as illustrated in
Fig.10. Each design case is represented by a genotype. The conditions (or criteria) of a
design case are included in the problem part of the genotype. Each criterion in the
problem part carries a rank which is initially randomly generated. Hence, the rank of
“1” indicates the best value is expected, and a higher rank implies the relaxation of the
appropriate criteria. When the rank of each criterion is assigned with value other than
“1", this indicates the relaxation of the appropriate criterion. In other words, the area
below the pareto surface is explored. The design mutation operator can further change
the ranks of some of the “problem part” genotypes such that evaluation of alternatives
in solution space would become possible.

The mechanism to produce emergence in CoGA1 is unlike CYCLOPS' recognition
approach. Conditions of a previous design case are represented in the “problem part” of
the genotype. As the design process continues in CoGA1, the crossover operation adds
and takes away the criteria used to evaluate each design solution. This provides a
mechanism for the emergence of new criteria for a specific solution, since the fitness for
each solution is locally defined in each genotype. However, all potential criteria are
represented somewhere in the space of genotypes.

5. Conclusions

In this paper, we propose a model for Problem-Design Exploration that can be
implemented using modified genetic algorithms. The modifications to the GA results in
co-evolution. One modification of the simple GA is called CoGA1. This approach is
novel in its representation of the fitness function and design solution in the same
genotype and the alternate GA operations on different parts of the genotype allows the
co-evolution of design requirements and design solutions. A second approach, called
CoGA2, represents the design problem as genotypes in one space and the design
solutions as genotypes in a second space. These space evolve in response to each other
by providing the fitness function for the other space. These algorithms change the
notion of search from having a fixed goal to an exploration of potential goals.

A number of issues need to be resolved for the implementation of these algorithms to a
specific problem domain. The issues raised here are: the notion of a local fitness
function, the selection of individuals based on local fitness, and the need for a fixed
termination condition.

The fitness function in CoGA1 varies from one genotype to another; in CoGA2 the
fitness varies from one generation to another. In using the fitness value as a basis for
selection, the issues of heterogeneous performance criteria needs to be addressed.
Because of the difficulty in comparing heterogenous performance criteria, we advocate
this can be resolved by the normalisation of raw values. However, should the
normalisation be standard for all features? Or can different feature defines its own
normalisation function? Will this divergent approach to normalisation causes an
inconsistency in the problem part? Also, a normalisation process can simply map a raw
value to a scale of [0..1], the normalised value does not indicate how well a solution is
matching up with an expected performance. Hence, another approach is to use the
membership function from the fuzzy logic paradigm. The outcome of mapping a raw
value to a membership function is also in a scale of [0..1], however, the ‘1’ indicates the
raw value achieves an expected requirement while ‘0’ represents a failure. Any other
number between the [0..1] scale indicates the closeness of the initial raw value to the
desired behaviour.

21

The selection process in CoGA1 and CoGA2 is based on the evaluation of variable
length performance criteria. Given that the value is typically a summation of satisfied
criteria, the issue of the length of the criteria list becomes important. Is a solution that
satisfies more criteria necessarily better than a solution that satisfies fewer but all
relevant criteria? One approach to allow solutions that satisfy fewer criteria to be
selected is to use a modified roulette17 to determine the selected individuals. In a
modified roulette, the number of criteria used to evaluate the solution could be used in
the first round of selections, followed by a selection based on the fitness value of the
solution. Also, if a threshold value is used to determine further consideration, should the
threshold be a constant? Should this threshold evolve? Do we need to guarantee the
fitness of individuals in the next generation by imposing an absolute threshold value?
Will the performance be improved if individuals from all previous generations are used
instead of the last generation?

A major difficulty with both CoGA1 and CoGA2 is that the criteria for fitness changes
over time, precluding the possibility of convergence. A termination condition is needed
to stop the evolutionary process. If convergence is not a condition to terminate the
process, is time the only consideration? or should there be a meta fitness function? are
there any guidelines or global criteria to indicate an exploration process should
terminate?

Since a simple GA only has one value to be optimised, the common approach relies on
representation such that the result can be directly derived from a genotype. However, in
the co-evolving GA, there are heterogeneous performance criteria with changing goals.
How should we interpret the evaluation? Is the best performing result in the last
generation to be the result for the problem? Or should we consider the generation trace
to identify the best ever design solution? i.e. the current best or the global best? Suppose
we find the best solution, but what does it mean to have a solution satisfying a problem
which is different from the initial problem specification? A metric has to be devised to
determine the “goodness” or “usefulness” of a solution.

A remark is inserted here that crossover is the only recombination operator in our
present algorithms, a usual secondary operator, mutation, is omitted. Mutation may
serve as an useful operator to recover information which is lost together with the low
performing genotypes. This can become a critical operator if we want to recover lost
information from the problem space.

The work to date is the implementation of CoGA1 and this algorithm was trialed on the
design of a braced frame16. Two implementations of CoGA1 are written up. They are
the Phases CoGA1 and the Flip Flop CoGA1. Performance and efficiency of these two
implementations are measured and compared. It has also been reported that Case-Based
Initialisation (CBI), which is the seeding of an initial population with relevant cases, can
help to improve performance and efficiency19. Tests have been carried out to assess
these claims, however we cannot find a conclusive result using our co-evolving
paradigm.

Although the algorithms in this paper introduce many unresolved issues, the algorithms
provide a basis for the co-evolution of a design problem with the potential design
solutions. The implementation of these algorithms will force a resolution of the issues
raised. The purpose of introducing the algorithms and the issues here is to demonstrate
the variations possible in the interpretation of the algorithms CoGA1 and CoGA2.

22

Acknowledgments. This work is supported by the Australian Research Council and an
Australian Postgraduate Research Award.

References

1. Alem, L. and Maher, M.L., A model of creative design using a genetic metaphor.
In T. Dartnall (Ed.) Artificial Intelligence and Creativity: An Interdisciplinary
Approach, Kluwer, 1994, pp 281-291.

2. Corne, D; Smithers, T. and Ross, P., Solving Design Problems by Computational
Exploration. In John S. Gero and Fay Sudweeks (Eds.), Preprints of the IFIP WG
5.2 Workshop on Formal Design Methods for Computer-Aided Design, Talinn,
Estonia, June 16-19, 1993, 1993, pp.249-270.

3. Gero, J.S., Towards a Model of Exploration in Computer-Aided Design. In John
S. Gero and Fay Sudweeks (Eds.), Preprints of the IFIP WG 5.2 Workshop on
Formal Design Methods for Computer-Aided Design, Tallinn, Estonia, June 16-
19, 1993, pp.271-291.

4. Gero, J.S., Prototypes : A Knowledge Representation Schema for Design, AI
Magazine, Winter, 1990.

5. Gero, J.S.; Louis, S.J. and Kundu, S., Evolutionary Learning of Novel Grammars
for Design Improvement. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing, 8, 1994, pp.83-94.

6. Goldberg, D.E., Genetic Algorithms: In Search of Optimization and Machine
Learning. Addison-Wesley, 1989.

7. Goldberg, D.E. and Samtani, M.P., Engineering Optimization Via Genetic
Algorithm. In Proceedings of the Ninth Conference on Electronic Computation,
1986, pp.471-482.

8. Harvey, I., Species Adaptation Genetic Algorithms: A Basis for a Continuing
SAGA. In F.J.Varela & P.Bourgine (Eds.), Toward a Practice of Autonomous
Systems: Proceedings of First European Conference on Artificial Life, MIT Press,
1992.

9. Holland, J.H., Concerning Efficient Adaptative Systems, In M.C Yovits, G.T.
Jacobi, & G.D Goldstein (Eds.), Self-organizing Systems, Spartan Books, 1962,
pp.215-230.

10. Jonas, W., Design as Problem-Solving? or: Here is the Solution - What was the
Problem? Design Studies, 14(2), 1993, pp.157-170.

11. Koza, J.R., Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, 1992.

12. Logan, B. and Smithers, T., Creativity and Design as Exploration. In J.S. Gero and
M.L. Maher (Eds.), Modelling Creativity and Knowledge-Based Creative Design,
Lawrence Erlbaum Associates, 1993, pp.139-175.

13. Louis, S.J., Genetic Algorithms as a Computational Tool for Design. PhD
Dissertation for the Department of Computer Science, Indiana University, USA,
1993.

14. Maher, M.L., Creative Design Using a Genetic Algorithm. Computing in Civil
Engineering, ASCE, 1994.

15. Maher, M.L. and Kundu, S., Adaptive Design using a Genetic Algorithm. In the
Preprints of the IFIP WG5.2 Working Conference on Formal Design Methods,
1993.

16. Maher, M.L., Poon, J. and Boulanger, S., Formalising Design Exploration as Co-
Evolution: A Combined Gene Approach. In John S. Gero and Fay Sudweeks

23

(Eds.), Preprints of the IFIP WG5.2 Workshop on Formal Theory of Design on
CAD, Mexico, 1995.

17. Michalewics, Z., Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, 1992.

18. Navinchandra, D., Exploration and Innovation in Design. Springer-Verlag, New
York Inc, 1991.

19. Ramsey, C.L. and Grefenstette, J.J. (1993). Case-Based Initialization of Genetic
Algorithms. Proceedings of the Fifth International Conference on Genetic
Algorithms, (ed.) Stephanie Forrest, Morgan Kaufmann Publishers, pp.84-91.

20. Simon, H.A., The Sciences of the Artificial. MIT Press, 1969.
21. Watabe, H. and Okino, N., Structural Shape Optimization by Multi-Species

Genetic Algorithm. In Chris Rowles, Huan Liu and Norman Foo (Eds.),
Proceedings of the 6th Australian Joint Conference on Artificial Intelligence
(AI'93), Melbourne, Australia, November 16-19, 1993, pp.109-116.

